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ABSTRACT

A generalized likelihood ratio test is used to find approximate limits
on the angular resolution of two targets for a mechanically rotated antenna.
The accuracy of maximum-likelihood azimuth estimates of the two inter-
fering targets is also investigated. The results are found to be comparable
to those obtained by directly processing the outputs of the individual ele-
ments of an antenna array.

A simple ad hoc procedure for angular resolution and estimation is
also analyzed. The performance of the ad hoc test is found to be within
2 to 3 dB of that of the generalized likelihood ratio test.
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ANGULAR RESOLUTION OF TWO TARGETS
IN A PULSED SEARCH RADAR

INTRODUCTION

There has long been much interest in angular resolution of two point targets in radar
and related fields. Investigators in many fields have sought ways to improve the angular
resolution beyond the conventional 3-dB beamwidth limit (1 - 6), but none has been more
successful than Ksienski and McGhee (5,6). Ksienski and McGhee reported that they were
able to resolve two targets and obtain accurate angle estimates for target separations as
small as a quarter beamwidth. They achieved this result by processing the quadrature
components of the outputs of each element of a linear antenna array according to a gen-
eralized likelihood ratio test which tested for the presence of one or two targets.

It is of interest to determine whether performance comparable to that of Ksienski and
McGhee's array processor can be obtained in a search radar using a mechanically rotated
antenna. When the antenna rotates through a slowly fluctuating point target, the radar
return consists of a sequence of pulses whose amplitude is modulated by the rotation pat-
tern of the antenna and whose phase is random and independent from pulse to pulse. It
is difficult to extract phase information from an incoherent pulse train, and the interest
is in examining a radar which makes no attempt to do so. In other words, one assumes
that the pulses are envelope detected prior to any resolution tests or target parameter
estimations. On the other hand, in the array-processing work of Ksienski and McGhee, all
phase information was used by obtaining estimates of the amplitude of the quadrature
components of the target returns.

This report provides the results obtained using a generalized likelihood ratio test
(GLRT) to test for the presence of one or two targets in the returns of a pulsed search
radar with a mechanically rotating antenna. The envelope-detected pulses constitute the
input data for the GLRT. The performance of this test is evaluated by computer simula-
tion. In addition, an ad hoc test based on the duration of the radar returns above a detec-
tion threshold is evaluated and compared to the GLRT. The accuracy of the angle estimates
of the two interfering targets is also calculated.

FORMULATION OF THE RESOLUTION TESTS

Mathematical Model

A two-dimensional (2-D) search radar which scans an azimuthal sector is considered.
The sector may be a complete 3600 circle or only a few degrees but is at least several times
larger than the 3-dB beamwidth of the radar. A pulse is emitted at angular intervals of
AO. If enough pulses are emitted on a scan of the sector such that AO is small compared
to the 3-dB beamwidth of the scanning antenna, then the returns from a stationary target
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will be modulated by the antenna beam pattern. If one assumes that a single nonfluctu-
ating* point target is present, then the return from the ith pulse can be written

ri(t) = 'Y f(i T) cos [ t + 0(t) + Qjjj + n(t) (1)

where

-y1 is the maximum amplitude of the return signal (deterministic but unknown)

f is the modulation function, which depends on the antenna gain pattern

Oi is the azimuth corresponding to the ith pulse

OT1 is the actual target azimuth

3 is a scale factor equal to half the null-to-null beamwidth

Wo is the frequency

0(t) is the deterministic phase modulation (which may be present for pulse compression)

4'i is the target phase angle, which is modeled as a uniformly distributed random vari-
able independent from pulse to pulse

n(t) is white Gaussian noise with spectral density N0 /2.

If instead of the single target of Eq. (1) there are two targets within the given range
cell, then the return will be

2 /

ri (t) f(j TR) cos [ t + 0(t) + hi] + n(t). (2)

oa=1

The target phase angle 2i is also assumed to be a uniform random variable with pulse-to-
pulse independence, and further, 2i is assumed to be independent of 1i.

The resolution problem as defined here is to detect the targets in such a manner as to
identify whether Eq. (1) or Eq. (2) pertains. Also of interest is the related question con-
cerning the accuracy of the azimuthal estimates when two targets are present.

The resolution problem is viewed as a problem in hypothesis testing. The hypothesis
H1 , that one target is present, is to be tested against H2 , that two targets are present. This
test is presumed to occur after a detection test has revealed the presence of at least one
target.

Generalized Likelihood Ratio Test

The radar receiver in Fig. 1 is equivalent to a matched-filter/square-law envelope
detector. The outputs of the envelope detector {yi4=1 are assumed to comprise the avail-
ablet data for the hypothesis test.

*Equivalently, the target can be modeled as a scan-to-scan fluctuating target having a prior amplitude dis-
tribution which is unknown or which contains unknown parameters.

tThe number of pulses available, k, will depend on the pulse repetition frequency and on the scan rate.
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- sin [ot + 4dt]

Fig. 1 - Correlation receiver equivalent of a matched
filter/envelope detector

A likelihood ratio test is a statistical hypothesis test in which the test statistic is formed
from the ratio of the joint probability density functions of the observations under both
hypotheses, i.e.,

P[yl, Y2 , Yk I H2 ]

P[yl, Y 2 , Yk IH 1 ]' (3)

where p[y 1 , Y2 , ... Yk I Hj] is the joint probability density function or likelihood of the
observations under hypothesis H. The decision is made by computing the value of test
statistic A and comparing the result to some threshold. If the threshold is exceeded, the
decision is "two targets present," and if the threshold is not exceeded the decision is "one
target present."

In the appendix it is shown that the density of a single observation is noncentral chi-
square with two degrees of freedom and a noncentrality parameter which is hypothesis
dependent. Under H1 the noncentrality parameter X1 is

H1: Xi[= a2 ( T) (4)

where 2 is the mean square noise level. Under H2 the noncentrality parameter is
approximately

H2 : 2i = 2 f2 (i OT) (5)

oal1

As shown in the appendix, the exact noncentrality parameter under H 2 contains a term
proportional to the phase difference of the two targets, but the target phase angles are
unknown and cannot be estimated under the assumptions made here. The correct method
(from the Bayesian point of view) for eliminating this term is to find the ensemble average
of p[yi/H 2 ] with respect to the target phase angles, as discussed in the appendix. The
resulting integration is not a standard integral, and hence it was decided to simply take the
ensemble average of the noncentrality parameter instead of the entire density function.
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Since the likelihood ratio processor is specified by a ratio of probability density func-
tions, the effect of approximating a density function is to make the resulting processor only
an approximate likelihood ratio processor. The performance of the resulting processor seems
to justify the approximation.

Since the pulses are assumed to be independent, the joint probability density is just
the product of the densities of the individual observations. That is

k

P[Y1, Y2, * k Hj] = f p[yi Hj]
i= 1

= k exp (yi + jig k Io (vxim (6)

where I0 is the modified Bessel function of the first kind with zero order.

Now to compute the value of the test statistic for a particular set of measurements,
the likelihoods are computed by substituting the measurement values into the right-hand
side of Eq. (6). The noncentrality parameter must also be evaluated and substituted into
Eq. (6). One notices that to compute the values of the noncentrality parameter, knowledge
of the target-return amplitudes y, and 'Y2 and of the target azimuth angles OT1 and OT2
is required. These target parameters are unknown, but their values can be estimated from
the radar returns; the estimates can be used in lieu of actual parameter values to evaluate
the noncentrality parameters. The use of maximum likelihood estimates of these parameters
is the distinguishing feature of the generalized likelihood ratio test. Maximum likelihood
estimates are obtained by finding the values of the parameters which yield a global maxi-
mum of the likelihood functions.

To analyze the performance of the GLRT, it is necessary to compute the probability
density of the test statistic A under both H1 and H2 . The probabilities of correct resolu-
tion PR and of false resolution PFR can then be computed as a function of target ampli-
tudes and angular separation. The probability of correct resolution is given by

Pr [CORRECT RESOLUTION] PR = Pr [A > C I H2 ], (7)

and false resolution is

Pr [FALSE RESOLUTION] - P1 R = Pr [A > C I H1]. (8)

The difficulties encountered in finding the densities of the test statistic were formidable,
and an alternative approach was adopted, namely, analysis by computer simulation.

Since azimuth estimates are found as a step in the resolution test, azimuth accuracy
is readily investigated simply by examining the error variance of the maximum likelihood
estimates.
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Time-Above-Threshold Test

Though the GLRT described previously will provide an approximate bound on the
resolution performance, it is likely that the capability to process real-time signals in this
manner would be very costly. But whether or not, it is useful to compare the resolution
performance of a simpler processing operation to that of the GLRT. One such resolution
test is designated as the time-above-threshold test or TAT test. This test is based on a
procedure which the radar operator might intuitively use. Following the envelope detector,
a sliding-window type of integrator sums n pulses from a given range cell; the integrator
output is then ordinarily compared to a detection threshold. As the search radar scans by
a target, the integrator output will show a time dependence similar to that in Fig. 2. For
very strong signals, the presence of two targets would be apparent to an operator viewing
this type of display, provided that the two targets were sufficiently separated in azimuth.
One might suspect that if the information in this type of display is examined more carefully,
two targets can be resolved even when the returns are rather weak and the targets are sepa-
rated by less than a beamwidth.

It turns out that by simply examining the time above threshold and the peak output,
one is able to resolve two targets and to estimate remarkably well the azimuth angles of
the two resolvable targets. The mean time above threshold as a function of integrator
peak output for several values of target separation is required as a priori information. This
information srves as a set of calibration curves. When an estimate is to be made for a
particular scan, the obtained time above threshold and the integrator peak output are then
used to find from the calibration curves the target separation which produces, on the aver-
age, this time above threshold.

SIMULATION RESULTS

Simulation Details

The performance analyses of both the GLRT and TAT resolution tests were conducted
by computer simulation. To determine the probability of resolution, the data was generated
for the condition two targets present, H2. For each pulse, two independent, zero-mean,
unit-variance, normal random variables were generated corresponding to the quadrature

DETECTION
THRESHOLD

SINGLE TARGET

Fig. 2 - Integrator output showing response
for one and two targets

DETECTION/ _\\ _ _A__4 THRESHOLD

TWO TARGETS

5



J. H. HUGHEN

components x i and xsi of Fig. 1. The mean values Mci and si were then computed
according to

2

'Yu { i T o
ci oa a f Q ) cos oei (9a)

a=1

2

"si > u f(i OTa) sin i (9b)
a=i

and added to the zero-mean random variables. Equations (9a) and (9b) are derived in the
appendix. To compute the means Mci and usi, a specific scan pattern f(.) must be chosen.
The pattern used in these simulations was

sin rx
(X) = 7rX -1 x61 (1Oa)

and

f(x) = 0, otherwise. (1Ob)

This scan pattern is seen to be that portion of the curve lying between the first nulls. Using
this definition of f, the scale factor 3 is specified such that the null-to-null beamwidth equals
2p, i.e., f(01(3) is a null when 0 = ± 3.

The phase angles 01i and 2i are generated using a uniform random-number generator.
The simulated quadrature components are then squared and added to form the envelope-
detector outputs.

The number of pulses in each data set was variable, depending on target separation,
but chosen so that 30 pulses would occur between the antenna-pattern nulls for a single
target.

The test statistic is computed and then compared to a threshold value of 2.0, which
gives a PFR of less than approximately 0.04 for y/u 6 10.* The false-resolution probability
is dependent on the signal-to-noise ratio for a constant threshold.

The TAT test is performed after first integrating 10 pulses. If the envelope-detector
output is yi, then the integrator input z is

10

Zi = IYi+ 1 -j, (11)

j=1

*The threshold value and the corresponding false resolution probability were determined by computer
simulation.
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which is compared to a detection threshold. The detection threshold corresponds to a
false-alarm probability of PF = 10-6 in these simulations. If at least one detection-threshold
crossing occurs, then the duration of the excursion above threshold is calculated. This calcu-
lation is made by designating the first pulse of the (integrated) data set to cross the thresh-
old as Nf and the last pulse exceeding the threshold as NQ. The length Nd of the excur-
sion above the threshold is then given by

Nd = NQ -Nf + 1. (12)

The resolution test is then made by comparing Nd to a resolution threshold.

The resolution threshold for the TAT test is determined as follows. First the average
length of the excursion above the detection threshold for the single-target case is estimated
by running 50 trials at each of several signal-to-noise ratios. Then Nd is determined on
each trial, and the results are averaged. This result is shown in Fig. 3 as the curve labeled
"Single Target." The variance of Nd for the single-target case is also estimated, and the
curve corresponding to the mean plus two standard deviations is constructed. This curve
becomes the resolution threshold. The reason for making this curve the resolution thresh-
old is simply that for a single target, the probability that Nd falls below the resolution
threshold is about 97.7%. To express it another way, the probability that the resolution
threshold will be exceeded in the single-target case is about 0.023, i.e., PFR 0.02. The
resolution threshold vs integrator peak output is stored in the simulation program.

Estimation of target azimuth angles is accomplished as a part of the resolution test
for the GLRT; however, the TAT test requires more processing in addition to that required
for resolution. Azimuth estimation in the TAT test requires three more curves as a func-
tion of integrator peak output, specifically the average sequence length above (detection)
threshold for one, one-half, and one-quarter beamwidth target separations. The curves are

35
I BEAMWIDTH

30 RESOLUTION THRESHOLD
-j0 r ~~1/2 BEAMWIDTH

a 25 -

> 20 _ p A ft NSINGLE TARGET

- L; t 1/4 BEAMWIDTH

-J

Cl

60 80 100 120
MAXIMUM INTEGRATOR OUTPUT

Fig. 3 - Sequence length above detection
threshold vs integrator peak output
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all shown in Fig. 3.* When a particular data set is processed, the sequence length above
threshold Nd and the integrator peak output are found and in effect looked up in the
graph of Fig. 3. If Nd falls above the resolution threshold, then the presence of two tar-
gets is assumed, and the separation in beamwidth is found via interpolation.

The curves of sequence length above threshold vs integrator peak output were obtained
for equal-strength targets; however, good estimation results were obtained when the actual
targets strengths were unequal.

Resolution Results

Figures 4a - 4c show the estimated probability P of resolving two targets using the
GLRT. Each point on these curves represents the average of 50 independent trials. The
95%-confidence interval for P is ± 0.14 at P = 0.5 and decreases to ± 0.09 for P = 0.1 or
P = 0.9. The four curves on each graph are labeled 72/71 = 1, 0.5, 0.2, and 0.1; N = 13
indicates that there were 13 pulses within the 3-dB beamwidth. This corresponds to 30
pulses within the null-to-null beamwidth. Figures 5a and 5b show the corresponding reso-
lution probabilities for the TAT test. As one might expect, at the lower signal-to-noise
ratios, the GLRT shows better resolution performance in every case. However, for some
cases at the higher signal-to-noise ratios, the TAT test performs as well as the GLRT.
Specifically, comparing the two tests in Figs. 4a and 5a, it is seen that for 72 /fY = 1 and
72/71 = 0.5 the TAT test actually shows some slight improvement over the GLRT at the
higher values of signal-to-noise ratio. In this regard three observations are made: (a) The
95%-confidence interval for P = 0.9 is ± 0.09, so that some of the disparity may be statis-
tical and hence more apparent than real. (b) It is well known that the GLRT is not a
Uniformly Most Powerful (UMP) test (7). Indeed, for some parameter values the TAT
test may be the more powerful. (c) Some approximations were made in the equations for
the test statistic of the GLRT which could account for some performance degradation.

For the half-beamwidth-separation case of Figs. 4b and 5b, the GLRT appears to be
uniformly more powerful than the TAT test. The TAT test failed to give useful results
for the case of quarter-beamwidth separation.

Figure 2 of Ref. 5 has been replotted as Fig. 6 so that the abscissa reflects the signal
amplitude-to-noise ratio which would have been measured had a beamformer been used.
This change of abscissa permitted a more direct comparison with the present work. Fig-
ure 6 is the result obtained by Ksienski and McGhee for an 11-element array with a target
spacing of one-half beamwidth. The corresponding result of the present work, Fig. 4b,
shows a few dB improvement over the Ksienski result, which indeed is to be expected, since
in the mechanical-scan case, 13 pulses occur within the 3-dB beamwidth, whereas Ksienski's
result is for a single pulse.

Figure 7 shows the signal amplitude-to-noise ratio required to achieve a 0.5 probability
of resolution for 7 = 72. If one takes into account the postdetection integration gain of
5 to 6 dB for the GLRT, then the results of Ksienski and McGhee will show a 1- to 3-dB
performance advantage over the GLRT. It should be noted for the results of Ref. 5 that
the probability of false resolution PFR is not known exactly, although the authors state
that it is acceptably low.

*Unless stated otherwise, beamwidth refers to the 3-dB points on the antenna pattern.
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(a) One beamwidth

1.0

N = 13
0.8 _

0.7 -

0.6_

<m2 0.5_

(c) Quarter beamwidth

(b) Half beamwidth

Fig. 4 - Probability of resolving two targets using GLRT
for three target separations
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(b) Half beamwidth

(a) One beamwidth

5
Y,/ (dB)

Fig. 5 - Probability of resolving two targets using TAT test
for two target separations

1.0
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Fig. 6 - Probability of resolving two targets sepa-
rated by half beamwidth for an 11-element array
(from Ksienski and McGhee (5))
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22

20-

18 

16-

14-

m 12

Fig. 7 - Signal amplitude-to-noise ratio required for _ 10 
0.5 probability of resolution vs target separation 8

6-

4 - A GLRT
0 TAT

KSIENSKIIOI 
0 0.25 0.50 0.75 1.00

TARGET SEPARATION
(FRACTION OF BEAMWIDTH)

The target phase angles 01i and 12i are assumed to be independent in the derivation
of the test statistics for both the GLRT and the TAT test. It is interesting to compare
the performance of the tests when the target phase angles have a fixed relationship, i.e.,
when 2i = 01i + l, where is a constant. Figures 8a and 8b show the resolution per-
formance for several values of 71 for a half-beamwidth target separation. The TAT test is
affected more than the GLRT by the nonrandom phase difference. Indeed, according to
Figs. 8a and 8b, there is little degradation of the GLRT, whereas the TAT test is degraded
significantly for small 77. It is quite likely that the TAT test performance can be improved
for this case where 2i = Al i + if this relationship is considered in the generation of the
calibration curves of Fig. 3.

Angular-Estimation Results

Figures 9 through 12 show the rms error in the azimuth-angle estimates for the GLRT
and TAT tests. All of these graphs are normalized with respect to the 3-dB beamwidth.
The rms error is defined as the square root of the mean-square error (MSE). For target-1
azimuth,

M ^.

MSE=M B (13)
j=1

where M is the total number of resolutions which occurred in the 50 Monte Carlo trials,
0 T1 is the true azimuth of target 1, OTp is the estimate of azimuth 1 obtained on the jth
resolution, and B is the 3-dB beamwidth of the antenna scan pattern. As Eq. (13) indicates,
unless both targets are detected, i.e., resolved, the azimuth estimates are not included in the
results shown. Only points which correspond to at least 10 resolutions are plotted.

Figures 9a and 10a are for a one-beamwidth separation of the two targets. The
maximum-likelihood (ML) estimates are somewhat more accurate than the TAT estimates
for this case, as might be expected. However, for the case of half-beamwidth separation,
the reverse is true.
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Fig. 12 - Root-mean-square error in TAT estimate of target-2
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The TAT estimates of target-1 azimuth in Fig. 10 show an increase in accuracy as the
target ratio 7y2/7yl decreases. However, the corresponding ML estimates of Fig. 9 do not
show the same trend. Another notable point is that the TAT estimates appear to be approxi-
mately equally accurate in the one-beamwidth separation and the half-beamwidth separation
cases, whereas the ML estimates show a definite degradation as target separation decreases.

The estimation error for target 2 is shown in Figs. 10 and 11.
rms error increases as the ratio 72/ h decreases. This is the proper
72 is equivalent to decreasing the signal-to-noise ratio of the return

One notes that the
trend, since decreasing
from target 2.

CONCLUSIONS

One of the objectives of this investigation was to compare the angular-resolution results
for a mechanically scanned antenna to those results obtained for the direct processing of the
array-element outputs. It was found that, indeed, the angular resolution capability of the
mechanical scan is comparable to that obtained by direct array processing. Further, the
results presented here indicate that reliable resolution can be obtained for targets spaced as
close as a half beamwidth. This is in contrast to the conclusion of Ksienski and McGhee
(6) who suggested that reliable resolution could be obtained with modest signal-to-noise
ratio for target spacings down to a quarter beamwidth.

Comparison with their results should be made by considering the signal-to-noise ratios
which would result from summing the outputs of the elements of their array rather than
individual element signal-to-noise ratios. On this basis their results, as well as those pre-
sented here, indicate that a very large signal-to-noise ratio is required for resolution at a
quarter beamwidth.

Though the GLRT used in this study is considered impractical in its present form,
there are means to shorten the computation time and to reduce the complexity of imple-
mentation. For example, instead of the gradient method used to maximize the likelihoods,
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a finite grid search could be devised. This approach worked well for Ksienski and McGhee.
On the other hand, the resolution performance of the more readily implementable TAT
procedure was within 2 to 3 dB of the GLRT for a resolution probability of 0.5, and hence
future efforts would probably be more fruitful concentrating on the TAT test rather than
on the GLRT.

The analysis presented here dealt with an idealized target model in a background of
white noise. Extension of the analysis to targets spread in range or doppler in a clutter
background would be a very difficult task. A more feasible problem would be to analyze
the performance degradation of the present GLRT and TAT test in a realistic environment.
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Appendix

DISTRIBUTION OF ENVELOPE DETECTOR OUTPUT

In this appendix the probability distribution of the output yi of the square-law enve-
lope detector will be derived. The input to the radar receiver under H1 is given by Eq. (1),
which is rewritten here for convenience:

H1 : r(t) = f( i 0T) cos [ot + 0(t) + li] + n(t). (Al)

Referring to Fig. 1, the quadrature components xci and xsi are seen to be

'Y OT 1 T 2
xd - f 0 cos +I T n(t) cos [ot + 0(t)] dt

and

"Si _ a r ( ,B )sin 4 li + T n(t) 2 sin [t + 0(t)] dt.

Since n(t) is Gaussian white noise with E[n(t)n(u)]
in Eqs. (A2a) and (A2b) are conditionally normally
pci and psi respectively, where

= (NO/2) (t - u), both xci and xsi
distributed (given P1 i) with means

1i= fi T1 cos 'P (A3a)

(A3b)"-I i = f 0T1) sin Ph.

The variance of xci is

var (xci 1i, H1 )

= E {2 2 f f n(t)n(u) cos [coot + 0(t)] cos [wou + 0(u)] dt

4 f| ° cos2 [coot + (t)] dt
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No (A4c)

u2 T

By definition the noise power cr2 is the product of the noise spectral density N0 /2 and
the noise equivalent bandwidth, which is approximately 1T. Therefore

G2 No (A5)

and hence

var (xci I Eli Hj) = var (si I Eli I-1) =.(A6)

The output of the envelope detector is the sum of the squares of two nonzero-mean, unit-
variance, normally distributed random variables and thus is distributed according to the
noncentral chi-square distribution with two degrees of freedom and noncentrality parameter
Xji, that is, under H1 :

H ~2 , X,,H1: i X2,Xi

where
2

X 1 = + ps2i =Ti) (A7)

One notes that this result is independent of target phase 1 . Price* gives a closed-form
expression for the noncentral chi-square density:

1 F- (Yi Xid (l
p(y I H1 ) = exp L 2 j Io (V X ) (A8)

Under H2 , the radar return is

ri(t) = lf OT) cos [Wot + ¢(t) + Eli]

+ 2f 2i ) cos ot + 0(t) + J2i] + n(t), (A9)

where 01i and 2i are assumed to be uniformly distributed, independent random variables
with

E (li plj) = 3 2 (A10)

Also

E,(Q 1 i 2j) = 0, all i and I. (All)

*R. Price, "Some Non-central F-Distributions Expressed in Closed Form," Biometrika 51, Nos. 1 - 2,
107 (1964).
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Again the noise is white Gaussian with

E[n(t)n(u)] = N° 6 (t - u). (A12)

The quadrature components xei and x8 i are again seen to be conditionally normal, that is,
given 0 1 i and 2i 

Xei N (i, 1) (Al3a)

and

Xsi N (i, 1), (Al3b)

where

'i= f (i O) cos 0li + 72 f cos (Al4a)

and

'Y1(oiOT + 72 i - 0T2
Psi = i f )sin °1i a sin i/2i. (Al4b)

The output of the envelope detector yi is the sum of squares of two independent, condi-
tionally normal random variables with nonzero mean and unit variance, and thus yi is
conditionally noncentral-chi-square distributed with two degrees of freedom and noncentrality
parameter X2h where

X2i = 71 f2 ( )i OT + 2 f2 (i OT2)

+ 2 (Qi-OT f(o OT Cos ('i -) 2() (A15)

To obtain the unconditional distribution of yi under H2 , it is necessary to average over the
phase-difference variable, that is

p(y I H2 ) = fP(Yi I1i,02iH2)P(01b02i)d jid02i- (A16)

In view of the difficulty in evaluating Eq. (A16), it was decided to approximate the non-
centrality parameter X2i of Eq. (A15) by its ensemble average:

a2 (2 2 (A17)X~i (UU U2 ____

The unconditional distribution of yi under H2 is then noncentral chi-square with two
degrees of freedom and with the noncentrality parameter of Eq. (A17).
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